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Motivation

(1) First search for heavy, long-lived particles that decay to
photons at a hadron collider
(2) “eeyy+ET“ candidate event at CDF 1n Run I

¢ One of the photons and the plug eeyy# Candidate Event
electron candidate had no time
information. The SM prediction for
this event was 1+1x10°events

¢« Hypotheses: Some objects were not
from the collision? Or from neutral,
long-lived particles?

(3) Supersymmetric models — “Gauge Mediated Supersymmetry
Breaking” (GMSB) — predict heavy, long-lived neutralinos that

decay to photons (— next slides)

(4) Interesting cosmological implications for this parameter space
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GMSB Phenomenology

¢ Lightest neutralino x ° is NLSP and decays as %,°— Gy
¢« For much of the GMSB parameter space the ) ° decay time can be ~ns

¢ At the Tevatron neutralinos are pair-produced from 7~61i7~61i or )'Zliizo

Signature:
-
~0 [eave the 0 R
X, .
“f;’ detector
d e v Jets
W< Can be 5
1 or
. o\ detected rory
g 2
T & -
1 7 if both or only 1 % °
decay in the
detector due to large
¢ Use this model to estimate our sensitivity decay lengths
June 4, 2008
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D. Toback and P.
I Delayed Photons Wagner, hys Rev DT,

I Photons from long-lived neutralinos can arrive at the calorimeter

delayed compared to photons from the collision! =

The i1dea: Look at the difference between the time of arrival of
the photon and the time a prompt photon would need to reach the
same position:

(-}E?,tf) / CDF Calorimeter

Y from ,°

(\ prompt Y

= G

! J

Search for y+ET+ jets events to be sensitive to longer % ° lifetimes

that are interesting for cosmology
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Discriminating Search Variable
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¢ Separate SM Background from GMSB Signal using
(1) an arrival time measurement of the photon at the calorimeter

(“EMTiming system” — next slides)
(2) A time-sensitive vertexing

8 10 12 14

¢ Advantage: Low SM background at non-prompt arrival times
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So how are we going to do it?

¢« We want to look for (delayed y)+)ZT+ jets events — need timing system

¢« We make a loose event selection such that we are sensitive to any
model with a similar final state, then optimize our event selection

requirements using a GMSB model for several ) ° masses and lifetimes
Then: Open the blinded signal region and discover SUSY ... well...

Y + B + jets
2 i lurr

Other backgrounds"
: e e Non-collision backgrounds at

Difficulties:

No. of events

102 |-

those arrival times — estimate
their contribution directly from
non-collision data

1~

10

CDF Calorimeter

10~ ’
4 =2 0 2 4 6 8 10 12 14

Photon arrival time (ns)
¢ Use modified photon identification criteria as
photons from long-lived particles can arrive at
unusual incident angles at the calorimeter

- prompt y
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New: EMTiming at CDF
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Tracker:

CDF 1I Detector

¢ COT (Inl < 1.0)
Calorimetry:
¢ Central: CEM,
CHA (Inl < 1.0)
¢ Endcap: PEM
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“New at CDF: Timing in the |r veere. v e
Meth. A565, 543 (2006)
. EM calorimeter - EM Timing

Dot A caplililon Systen VMECrate ¢ Hardware similar to Timing system

in the Hadronic Calorimeter (HAD)
| ¢ The installation was finished ahead
__Comntingroom __ Of schedule in Fall 2004

Timing
Measurement

Time-to-Digital
Converter

(TDC)

Measurement

On Detector ' Tr_ﬁ‘""iﬁv-r
- i : LVDS signal o %
eqT
' l Aiiode VME Crate ‘
Light Guides :
[' ]_ __QEM__ Transition Amplifier Shaper ' i E11 it i
Splitter Board Discriminator
Photo- PMT PEM (TB) (ASD)
Electro- — wMultiplier Base | Dynode _
Magnetic Tube A -
Calorimeter PMT .
CEM, PEM) TV Voltage ¢ Covers most of the EM calorimeter
] ) pulse J’

YAz (i< 2.1

¢ 100 % efficient for photons with
>3.5 GeV (CEM)

¢ Only 1 channel failure in 40000 PMT

months!
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I Thanks go to...

Max Goncharov, Slava Krutelyov Eunsin Lee, Dave Toback

The success of this analysis at any stage depended very much
on each of them...
.. and many others at CDF!!
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I EMTiming Resolution

Apply calibrations to the EMTiming TDC time to correct for:
I ¢ Its dependence on the energy deposited
¢ Its dependence on where the photon showers into the tower (PMT
asymmetry)
I Then apply offline event-by-event “corrections” to take into account:
¢ Collision time: measured by vertex reconstruction in space and time "E¥
¢ Time of flight due to variation of the collision position

WSO Fully corrected time distribution

WE "1+ me] LN LR
£, for electrons from W—ev
R completely Gaussian

4 with RMS=0.64ns

events

10°

MC simulation

matches data! J )
1 i 1 E
E' J;m '2“‘6“'2""4" 5
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The Analysis

13 P. Wagner Users' Meeting Fermilab June 4, 2008



Data: CDF II Detector Performance

Year2002 2003 2004 2005 2006 2007 2008
Monthl 4 7 10L 4 71014 7 147101 7101410

I.-ﬁ i
24000
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[nitial Luminosity: ~250e30 cm s
This search covers 570 pb™
between Dec. 2004 — Nov. 2005

S
=3000
52500
—
~=2000
11500
1000
500

0

T
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To tape -
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Store Number

Total data recorded at CDF at the time: ~2 fb’!
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I Backgrounds

(1) Collision: Standard Model photon candidates
I > Right vertex

At high beam luminosity there may be multiple interactions for each

bunch crossing = there is more than one event vertex reconstructed with
a different position in space and time

If we selected the vertex that produced the photon then its corrected
arrival time distribution will look like this:
10%g

= L - R
- Electrons from W— ev .‘-,:';'33"-&
r -l'.‘l

(RMS=0.64ns /% oM
= '('_' .:I: =
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Events
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Backgrounds

(1) Collision: Standard Model photon candidates
> Right vertex
> Wrong vertex

\

... and 1f not, then the corrected
photon arrival time distribution
will look wider:
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Backgrounds

(2) Non-collision photon candidates

> Cosmics: Bremsstrahlung in the calorimeter from a cosmic ray shower

> Beam Halo: is produced by proton-bunch interactions with the beam pipe
that scatter off muons that can traverse the calorimeter

Primary Collision 1) These photons mostly
Beam-Halo —— : :
% \ i, 2 have negative arrival

w ) (‘9 Hﬁ'ﬂ lﬁ'm | }ﬂ‘*r'*"ﬂwﬁi H{uﬂm ﬁﬂim HM%; :{?1 times for geometrical
Mg b W Wy ol |y reasonsifthe beam
25 '2(1}:;1;.:125-5”'?-~-j PR ans) T O ey T halo muon came from

the primary collision

>
'/! Beam-Halo path bunch
P

[

K j proton direction  2) They mostly occupy
multiple towers in the
same wedge = can
separate them from
COSMICS
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I Background Prediction

¢ Take the collision time shape from a W—ev sample, the non-
collision shape from a data sample without tracks
¢« Fit each background shape to a time window in the y+F, +jet data
where the respective background dominates
¢ Vary the normalization of each shape:
Beam halo _ Collisions dominated

dominated 1025"“””"K""""'."'Q |
: Prospective GMSB signal
i BegM Halo 7

10D /6B Sgnal M (Cogmics
dominated

ns

Events/0.5

q—h

20
Photon Corrected Time of Agrival (ns)

5 Predict the number of events in the blinded signal region e

30



I Event Preselection

I ¢ Not GMSB specific!
¢ Require a central high-E_ photon, I and at least one high-E_ jet

¢ Trigger fully efficient at photon > 30 GeV and E_ > 30 GeV 39%
¢ Good vertex 1n space and time with >4 tracks that have a total p_ of 31%

>15 GeV to reduce non-collision backgrounds
¢ Require a jet with E_> 30 GeV to reduce non-collision backgrounds 249,

¢ No potential muon within 30° to reduce cosmics 23%

Efficiencies for a signal with /
m =100 GeV and T =5 ns
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I Optimization

I ¢ Idea: Find a fixed set of a-priori event selection cuts before
unblinding the signal region

¢« Method: We calculate the 95% C.L. expected cross section
limit, taking into account the expected number of background
events, luminosity, GMSB acceptance and their errors

¢ The result is a function of the event selection cuts: Photon E.,
jet E B, AO(F_jet) and time window
¢ Pick the lowest limit

¢ Map it out as a function of the )ZIO mass and lifetime
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Comparison of Signal and Bkg

m, = 100 GeV and T = Sns
Prod. cross section: 0.162pb

a - -
2 1.4 =
o = mi,=1 00 GeU,ri1=5 ns &
1.2 E (GeV)=30 GeV —
B E. =40 GeV =
1 El*'"*'=35 GeV —
% Ap=1.0 rad %
0.8 =
0.6 cP—0.128 pb ]
0.4af / S
& _=0.162 pb -
0.2 =]
_ B S -
_l I 1 [} I 1 I 1 ] I 1 [} ('] 1 I [l [l L 1 I '] [ I 1 [l I 1 =

0™ % 1 2 3 4 5
tcnrrected cut {HE}

Choose optimal cut at 2ns
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I Optimization Result

Dominant systematics:

. ¢ mean and RMS of the collision time
Final cuts: distribution (7%)
¢ PhotonE : 30 GeV ¢ ID efficiency (5%)

I ¢« E: 40 GeV ¢ stat. uncertainty on the fit of the time
¢ JetE.: 35 GeV shapes (determined by the fit)
¢« AO(E_jet):  1.0rad
PE; = open the box with
o t 2.0 ns
min these cuts

Expected Background: 1.3 = 0.7
(SM 0.7 £0.6; Cosmics 0.5+ 0.3; BHO.1 £0.1)

Expected 5{10 mass limit: 108 GeV at 5 ns (5.5 signal events)
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Unblinding the Signal Region —
Overview
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I The Data

CDF Run Il. 570 pb™
] I ] ] I' ] LI L ] Il ] I' ] L | L 1 I 1 1 | ==
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We observe 2 events
in the signal region

(predicted 1.3x0.7)
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I,

Event 1: looks like a QCD event where both £ and photon time are

mis-measured by a combined deviation of 5.6G

Event 2: likely a W—ev+jet event where the electron brem'd early in
24 . the tracking chambers and the wrong vertex has been selected 08



Exclusion Region

35_1 TTT i L | TTTT F TTT *'.l L | TTTT 1 ITTT | TTTT | 71T
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Prospects

Favored in Cosmology:

1207
[ l<m <1.5keV
100 ¢ In this range the G could be thermally produced
—~ = in the early universe and be a warm dark matter
n - : . . . .
£ 9. candidate which is favored to explain galaxy
v
E A substructure
= 60
© [ i~ - 1
=R Integr. Lumi = 10 fb
_1- ; oy = . |
?H 40'“ .l':.***s "‘r"h / . -1
I Integr. Lumi = 2 {b
20/" W T d ]
'ﬂl_—*—l—l—l----l-i----::“:,I:M.-.E.-r.-u.-.l'-'l-r-"F¥-'-"=|""'*:r:""|"-'|‘lr L T —— _I

80 00 120 140 160 There are already 3 fb™
%, mass (GeV/c?) on tape

26 P. Wagner Users' Meeting Fermilab June 4, 2008



Conclusion

photons at a hadron collider:

I This was the first search for heavy long lived particles decaying to

L

e
L~

First result using the newly installed EMTiming system (640ps
resolution)

Background predictions are entirely from data

Requirements are chosen to be most sensitive to GMSB models
important to cosmolgy

We observe 2 events which 1s consistent with the background
estimate of 1.3 £ 0.7

With 570 pb! we set the world-best exclusion limits beyond the
final LEP limits on GMSB models and exclude all models that
produce more than 5.5 events

Produced a PRD (D70, 114030), a NIM (A565, 543 (2006)), a
PRL (FNAL PUB-07-075-E), another PRD 1s accepted for
publication (at the 2" PRD review)
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